Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
The Trust1Connector API v3 exposes a secure REST API on the client device. Trust1Team has created a t1c.t1t.io
DNS entry (or customer-specific DNS entry) that points to 127.0.0.1
in order to facilitate SSL communication. This means that if the customer infrastructure uses a proxy for all network traffic, an exemption must be made for t1c.t1t.io
to always point to the origin device's loopback address. The same holds true for the localhost domain name, this should redirect to 127.0.0.1
on the user's local system, not the localhost of the proxy server.
If no exemption is made and https://t1c.t1t.io
is handled by a proxy, it will redirect to 127.0.0.1
IP of the proxy server instead of the local machine, and the Trust1Connector API will be unreachable.
The reserved domain from Trust1Team (t1c.t1t.io) has been registered with DNSSEC on the aforementioned URI. When a PARTNER uses its own DNS, we strongly recommend applying DNSSEC on the domain used in production.
Some (corporate) networks have a policy that disables the ability to bind a domain to a local network IP. The Trust1Connector relies on this for t1c.t1t.io
which resolves in to 127.0.0.1
which is a local ip for localhost
If DNS rebind protection is enabled it is unable to use t1c.t1t.io for connection towards the Trust1Connector because the network does not allow this Domain to be a local ip-address.
To resolve the issue either DNS rebind protection can be disabled or you can whitelist the domain t1c.t1t.io
to allow this domain.
Applications that want to make use of the Trust1Connector will be run from a specific domain. This means that the Trust1Connector needs to know that certain domains/applications want to make use of the Trust1Connector's functionality.
For these applications to gain access to the Trust1Connectors API we need to whitelist the domain in whats called the cors
list. This list contains all the accepted domains that can make use of the Trust1Connector.
If you want to use the Trust1Connector on a specific domain, please contact our support team to add this domain to the cors
list.
In order to correctly function, the Trust1Connector API must be able to connect to its configured Distribution Service. You must allow REST traffic to the following URLs (if applicable):
Acceptance: https://acc-ds.t1t.io
Production: https://ds.t1t.io
A partner can opt for its own Distribution server, whereas the URIs mentioned above, will be defined by the hosting party.
The option of working without Distribution Service is also possible. You can find all the possibilities to run the Trust1Connector here
In some cases (environments) the Domain acc-ds.t1t.io
or ds.t1t.io
are not accessable. If this is because the domain cannot be resolved we do recommend to either ask the network/system administrator to make sure that those domains can be resolved on the network. Or changing the DNS server to the google DNS (8.8.8.8 & 8.8.4.4), this has solved the issue for some of our customers.
Keep in mind sizes can vary a bit depending on the Operating system and the environment (develop, acceptance, production)
Trust1Connector installer is about 20Mb in size. The installed size comes to 40-50Mb.
This includes the Trust1Connector API, Registry and Sandbox.
Trust1Connector installer is about 20Mb in size. The installed size comes to 40-50Mb.
This includes the Trust1Connector API, Registry and Sandbox.
The increased size over windows mainly comes to the way MacOS handles dialogs. These are distributed with the Trust1Connector as seperate binaries.
This API key must be requested from TRUST1TEAM, or created by the customer if they are hosting their own Distribution Service. The API key must never be used in a front-end application (where the API key can be compromised). The API key is needed to exchange the token, using a Distribution Server, resulting in a short-lived Json Web Token.
A PARTNER can decide to distribute a version without the use of a JWT. In those cases, the liability of the security flow resides completely in the context of the web application, thus Trust1Team can not guarantee the security context where the Trust1Connector is integrated upon.
Trust1Connector support two operating systems for all tokens, Linux (Debian/Ubuntu) for PKCS11 tokens; On request, a Google Chromebook can be supported depending on the deployment or target installer.
MacOS 11.x or higher
X86 architecture
M1/M2/ARM architecture
Windows 810 or higher
Trust1Team support Windows/Mac OSX OS families where lifecycle support is guaranteed from the Vendor of the Operating System. The moment the OS version has been marked as ‘end of life’, Trust1Team can not guarantee the functionality anymore.
When PARTNERS are in need to support an older version or keeping the support running on the level of Trust1Team, no guarantees can be made. Trust1Team can setup a custom project, on demand of the PARTNER. Those requirements, changes or other adaptations needed, are not covered in the Trust1Connector license fee.
2023-10
macOS 14 (Sonoma) has issues at the moment with usblib and CCID. A future patch will fix the card reader issues; Updates will be come avaible when a patch is released
To run in user-space on Windows 8.1 or higher some components have to be set on the operating system
Below you can find a list of all registry keys that will be created for the working of the Trust1Connector, All these keys are added to HKCU
HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
HKEY_CURRENT_USER\SOFTWARE\Trust1Team\Trust1Connector
Since 3.5.x no more cookies are used.
The Trust1Connector is browser agnostic so it does not matter what browser is being used as long as it support HTTP communication (HTTP 1.1) (which should all of them).
Version wise we do recommend to use the latest versions of your browser for security reasons but the versions below is was we accept as a minimum
Chrome >80
Firefox >75
Edge 88 or higher
IE 11 (End of Life is June 15 2022)
All other browsers. As recent as possible
Running the Trust1Connector in a shared environment, such as Citrix, XenApp and Remote Desktop, requires additional installation steps. In this section we explain the concept and approach used.
The following schematic seems rather complicated as it explains the inner workings of the Trust1Connector components, the concept is elaborate further on this page. If you are only interested in what the integration impact is for your Web Application in a Shared Environment, you can skip directly to the section: Integration in Web Applications
The Web Application can use the T1C-SDK-JS or a custom REST API client for integration purpose. As the Web Application operates in a browser context, resolving an agent, by means of a consent, will result in a browser cookie being provided.
The T1C-SDK-JS implements the detection of a Shared Environment during the initialisation of the library. When initialisation succeeds without a controlled exception, the setup is a standalone; when the initialisation throws an 401 Error, the T1C-SDK-JS can be used to request the user for a Consent.
When using the REST API directly form your web application, reading the browser cookie and performing the initialisation must be done by the integrating Web Application itself.
Compared to Trust1Connector v2, the v3 release has a separate component to be be installed on a shared host. This component is called the T1C-Proxy
and only exposes the following use cases:
Verify random available ports [in a predefined range] which can be used by an Agent (Session of T1C-API running in user space)
Port reservation upon installation of a new T1C-API in an active user session
Port registration upon initialisation of a T1C-API in an active user session
Management of an in-memory list of active Agents
Management of user consents in a shared environment by means of browser cookies with an optional configurable TTL (time to live)
The T1C-Proxy
operates by Default on the API port defined in the T1C-DS
(Distribution Server). From a Web Application perspective, this is the only information known. When a Web Application requests the information of the device, the PROXY device type will inform the Web Application that the targeted underlying API is a PROXY, which means that the Web Application must ask for the Agent specific API port to configure an URI which can be used to execute the use cases.
When using the T1C-SDK-JS
this is done implicitly during initialisation.
A T1C-API
installed for a specific users runs in [User Space]. To avoid possible attack vectors, the Trust1Connector v3 will always run in [User Space].
Upon installation of the T1C-API
, during the post install phase, the T1C-API
will try to verify automatically if it is running in a shared environment. If this is the case, the T1C-API
will ask the T1C-Proxy for available ports and will reserve those post, prior to initialisation and startup.
The ports which are reserved by the T1C-Proxy
are the following:
T1C-API
Port: This is the port exposing the OpenAPI interface towards Web Applications and used by the T1C-SDK-JS
When receiving ports during post-install, an user agent device is temporary RESERVED
in the Agent Registry of the T1C-Proxy
. Upon T1C-API initialisation, the port configurations will be confirmed and the Agent Registry will set the device state on REGISTERED
. From this moment on, a T1C-API instance, running in an active user session, will be available for the Web Application via the consent flow.
The T1C-gRPC
instance is inherently a component from the T1C-API
, and thus is managed by the T1C-API
. As each user must have it's own hardened runtime for communication purpose, the port assigned for T1C-gRPC
will be registered and configured by the T1C-API
(and restarted when needed).
Starting from this release (v3) of the Trust1Connector, each device must have a link with an active and running T1C-DS (Trust1Connector Distribution Server). This is to guarantee security, updates, and avoid potential risk in production.
The T1C-DS is proceeded by an API Gateway who is managing the security offloading in the application layer. For a Web Application to communicate with a T1C-Proxy or T1C-API, a JWT (Json Web Token) is needed and obliged. The T1C-DS is responsible for the key management, the certificate management and other use cases which are described in a separate wiki.
In order to retrieve a valid JWT, the T1C-DS can be requested from your application back-end with a valid api-key. The JWT is valid for a given amount of time, and sets the context used when requesting the T1C-API on a device.
The PIN handling logic is implemented in the Trust1Connector API. More information on the basic and/or advanced rules can be found on the following link:
The Trust1Connector after correct initialization has the ability to retrieve the available card readers detected on the system. With these card readers you can continue and execute functionality such as retrieving biometric information, signing data, authentication, ...
Below you can find more information on how to retrieve the available readers. All these functions are available in the
Returns a list of available card readers. Multiple readers can be connected. Each reader is identified by a unique reader_id
.
The response will contains a list of card readers:
When multiple readers are attached to a device, the response will show all connected card readers:
Important to notice:
The response adds a card
-element when a card is inserted into the card reader.
The response contains card-reader pin-pad
capabilities
As mentioned in the List card-readers
, when a smart-card is inserted/detected, the reader will contain the cart-type based on the ATR. The ATR (Anwser To Reset), is the response from any smart-card when powered, and defines the card type.
The Trust1Connector
recognized more than 3k smart-card types.
In the response below you notice that this specific card also includes a module
and description
property.
Both of these are arrays and are also optional. This means that the Trust1Connector recognizes this specific token and knows which module
can be used for this token. The Trust1Connector has the possibility to detect that a card can be used by more than 1 module, in that case the module array will display multiple values depicting which modules can be used.
The description
is purely metadata.
As mentioned, when a card-reader has pin-pad capabilities, this will be mentioned in the response (notice the pinpad
property):
The following example is the response for List card-readers
on a device with 4 different card-readers attached:
In the above example you notice that 4 card-readers are connected. Each card-reader receives his temporary id
which can be used for other functions where a card-reader id is needed.
This method can be requested in order to list all available card-readers, and optional cards-inserted.
Each card-reader has a vendor provided name, which is retrieved from the card-reader itself.
An additional property pinpad
, a boolean
value, denotes if the card-reader has pin-pad capabilities. A pin-pad is a card-reader, most of the times with its own display and key-pad.
From a security perspective, it's considered best practice to use as much as possible pin-pad capabilities of a pin-pad card-reader.
When a reader has a smart-card inserted (contact interface) or detected (contactless interface), the card type will be resolved by the Trust1Connector in order to respond with a meaningful type.
In the above examples you see that; one card-reader has a Belgian eID
card; another card-reader has a MisterCash
or VISA Card
available for interaction.
Returns a list of available card readers with a smart card inserted. Multiple readers can be connected with multiple smart cards inserted. Each reader is identified by a unique reader_id
and contains information about a connected smart card. A smart card is of a certain type. The Trust1Connector
detects the type of the smart card and returns this information in the JSON response.
Response:
Icon | Description |
---|
Released 26/07/2023
Released 30/05/2023
Released 18/01/2023
Released 22/12/2022
Released 20/10/2022
Released 20/10/2022
Released 19/10/2022
The API and Registry use a feature called Mutexes to have data that can be shared over multiple OS threads. Using this is necessary for some functionality. In previous versions when you have a Shared environment (citrix for example) you could make the API and Registry get into what's called a DeadlockThis caused the Mutex to never be unlocked for use by another OS thread. Causing the connector to be blocked completely.This has now been solved and has been tested on instances of 1000 concurrent devices.
We had a user which Operating system had a custom date set (not synced) which caused issues with DS communication. The DS communication also checks wether the time of request is not in the future or in the past (with some slack ofcourse). So if you use the Connector with a custom date you will not be able to contact the DS because it requires a request within a correct time-zone.If this is not the case it could be that a malicious user is trying to exploit the DS at which point the DS refuses the request. The issue was that this caused the Connector to crash.This has been solved so that the Connector does not crash.System time must be correct, otherwise DS communication can not be done (secrity issue)
Private Network Access is a new CORS draft. Which prevents remote servers to contact local instances without any extra checks. Chrome has already implemented this draft in a non-blocking manner, the implemenation of chrome is to send 2 pre-flight requests. One which is the normal pre-flight and another one where the PNA implementation has been done.At this point the pre-flight for the PNA implementation is non-blocking meaning that if the pre-flight fails it will not block the request.When the PNA Cors draft is final this will become blocking.In this release we've already started adding some required components to support this in an upcoming release.
In this release we've implemented a feature where the Connector will send it's log files towards the DS. This is so that support desks can easily get the log files of the device which is requesting support.
We've added a feature where you can run the Connector in regualr HTTP mode. To still be secure we've added a signature field to the responses which can be verified to not be tampered with at the client's side. This verification is implemented in the JS SDK.
Released 19/08/2022
Javascript SDK 3.6.0 has been unpublished and contains a bug in the consent flow where the error code is not returned correctly
Released 01/04/2022
The Mac Silicon (M1) is not yet supported for this version
The consent error code has been updated in the Trust1Connector API library, and t1c-sdk-js clients have no impact on that change
When using different instances of the Trust1Connector (optionally from another partner) on a Windows system, a port collision could be possible due to a race condition in port assignment upon initialization. Ports are now protected with anti-collision and are salted to make a port less guessable.
When no LaunchAgents folder was present on the system, the installation procedure creates this folder implicitly.
Camerfima is a new PKCS11 token added to the modules of the Trust1Connector. The Camerfirma token pre-requisites the installation of the Carmerfirma middleware.
Chambersign is a new PKCS11 token added to the modules of the Trust1Connector. The Chambersign token pre-requisites the installation of the Chambersign middleware.
The token info endpoint has been implemented before only for identity tokens. We have added support for Token Info of the PKCS11 modules. As the response has a different data structure, an additional type has been added for clients to parse the response correctly.
The PKCS11 token info exposes information on the algorithms which can be used for different use cases (digital signature, validation, authentication, ...). In a future release additional functionality will be provided such as: encryption, decryption, key exchange,...
For the different notification types, many tokens share multiple certificates for a single type. The original interface supported only a single certificate response. To be backwards compatible, those certification function have been adapted to be behave the same as in v3.5.x.
New functions are available to support multiple certificate reponses, they are called: [certificateType]Extended. For PKCS11 tokens the certificate response also returns, besides the base64 encoded certificate and the certificate id, the following properties:
issuer
subject
serial number
hash sub pub key
hash iss pub key
exponent (payment modules)
remainder (payment modules)
parsed certificate (ASN1 format of the base64 encoded certificate)
A new function has been added for all PKCS11 modules called the 'validate' endpoint. This endpoint, when available, can be used to validate a signed hash received after calling the 'sign' function. In an next version a variant of the validation function using OpenSSL will be added for all tokens.
For the Trust1Connector to support more PKCS11 functionality, the intermediate PKCS11 layer has been removed in preference of a direct PKCS11 LIB integration. FFI is used in RUST to support any library which need to be loaded.
Additional guard has been implemented to prevent empty algorithms for the digital signature and validation endpoints. PKCS11 tokens will verify as well if the provided algortihm is exposed as an allowed mechanism for the targetted use case.
The Trust1Connector can now detec Java Card Object Platform 3 typed cards
When requesting for a signature or an authentication, the correct certificate must be provided. For PKCS11 tokens the certificate id (or reference) can be ommitted. The PKCS11 token will be default pick the first certificate (for the type needed) and use this with the specified mechanism to sign/authenticate.
Include the on your web application. This will provide you with access to the SDK's functions which are used to execute the Trust1Connector's functionality.
From now on we will refer to the Trust1Connector JS SDK to the following variances;
T1C-js/t1cjs
T1C SDK
The Trust1Connector is a Javascript Library with TypeScript typings. This can be easily used in any web-application by loading the javacript files on the web-page.
Loading the T1C SDK onto a web-page can be done as shown in the code example below of a html
page
In the example you can see that we load the Javascript SDK on line 8
The defer attribute means that the script will be downloaded in parallel with the rest of the web-page but will be executed when the page has finished loading in.
This is mostly used to make sure that when the Javascript wants to target a specific element on the page, for example a div, that this element has already been loaded and is accessable.
We also provide an npm package that makes it easier to load and use the Trust1Connector Javascript SDK as a module.
All endpoints of the Trust1Connector API are secured and require a JWT to access. To obtain a token, an .
Supported OS or platform | Supported | Remarks |
---|
Validate and consent Lock error on mutex should not return invalid consent but should give a propper try again later error
As a system administator I want to see the transactions of devices - somehow the transactions don't reach the DS
Prevent the refresh needed when polling during connector update/upgrade
Add version to the installer
Upgrade Rust Edition 2021
Update Clap
As a connector running on a local device I want to support key rotation from the application consumer
Update clap to v4 as CLI parser
Enable insecure for debugging when running in dev mode
Update the token information returned to the web application to contain a valid type
Finalise PKCS11 session for each running instance when ending a remote transaction
Update the PNA specification as an extension on previous release (announced Google Chrome v117)
Add documentation for ReadMyCards Web Application used for demonstration and showcase
Upgrade utility libs
Initial version for an independant debugger
Add tracing events to the connector api and registry
JWT token validation consistently fails due to incorrect device time
As a DS I need to provide a JWT token based on the time information of the requester.
Pass through the optional lable from the JWT SUB to the transactions file and DS
As a system I should be able to send the log files to the DS so that support can easily look for issues with a device
As a client of the T1C API I want the api to validate the JWT token sent before proceeding with the use case
As a T1C API I want to renew the certificate needed for validation of the JWT when rotation happens on the DS
You can find an example for