Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
The Trust1Connector API v3 exposes a secure REST API on the client device. Trust1Team has created a t1c.t1t.io
DNS entry (or customer-specific DNS entry) that points to 127.0.0.1
in order to facilitate SSL communication. This means that if the customer infrastructure uses a proxy for all network traffic, an exemption must be made for t1c.t1t.io
to always point to the origin device's loopback address. The same holds true for the localhost domain name, this should redirect to 127.0.0.1
on the user's local system, not the localhost of the proxy server.
If no exemption is made and https://t1c.t1t.io
is handled by a proxy, it will redirect to 127.0.0.1
IP of the proxy server instead of the local machine, and the Trust1Connector API will be unreachable.
The reserved domain from Trust1Team (t1c.t1t.io) has been registered with DNSSEC on the aforementioned URI. When a PARTNER uses its own DNS, we strongly recommend applying DNSSEC on the domain used in production.
Some (corporate) networks have a policy that disables the ability to bind a domain to a local network IP. The Trust1Connector relies on this for t1c.t1t.io
which resolves in to 127.0.0.1
which is a local ip for localhost
If DNS rebind protection is enabled it is unable to use t1c.t1t.io for connection towards the Trust1Connector because the network does not allow this Domain to be a local ip-address.
To resolve the issue either DNS rebind protection can be disabled or you can whitelist the domain t1c.t1t.io
to allow this domain.
Applications that want to make use of the Trust1Connector will be run from a specific domain. This means that the Trust1Connector needs to know that certain domains/applications want to make use of the Trust1Connector's functionality.
For these applications to gain access to the Trust1Connectors API we need to whitelist the domain in whats called the cors
list. This list contains all the accepted domains that can make use of the Trust1Connector.
In order to correctly function, the Trust1Connector API must be able to connect to its configured Distribution Service. You must allow REST traffic to the following URLs (if applicable):
Acceptance: https://acc-ds.t1t.io
Production: https://ds.t1t.io
A partner can opt for its own Distribution server, whereas the URIs mentioned above, will be defined by the hosting party.
The option of working without Distribution Service is also possible. You can find all the possibilities to run the Trust1Connector here
In some cases (environments) the Domain acc-ds.t1t.io
or ds.t1t.io
are not accessable. If this is because the domain cannot be resolved we do recommend to either ask the network/system administrator to make sure that those domains can be resolved on the network. Or changing the DNS server to the google DNS (8.8.8.8 & 8.8.4.4), this has solved the issue for some of our customers.
Trust1Connector installer is about 20Mb in size. The installed size comes to 40-50Mb.
This includes the Trust1Connector API, Registry and Sandbox.
Trust1Connector installer is about 20Mb in size. The installed size comes to 40-50Mb.
This includes the Trust1Connector API, Registry and Sandbox.
The increased size over windows mainly comes to the way MacOS handles dialogs. These are distributed with the Trust1Connector as seperate binaries.
This API key must be requested from TRUST1TEAM, or created by the customer if they are hosting their own Distribution Service. The API key must never be used in a front-end application (where the API key can be compromised). The API key is needed to exchange the token, using a Distribution Server, resulting in a short-lived Json Web Token.
A PARTNER can decide to distribute a version without the use of a JWT. In those cases, the liability of the security flow resides completely in the context of the web application, thus Trust1Team can not guarantee the security context where the Trust1Connector is integrated upon.
Trust1Connector support two operating systems for all tokens, Linux (Debian/Ubuntu) for PKCS11 tokens; On request, a Google Chromebook can be supported depending on the deployment or target installer.
MacOS 11.x or higher
X86 architecture
M1/M2/ARM architecture
Windows 810 or higher
Trust1Team support Windows/Mac OSX OS families where lifecycle support is guaranteed from the Vendor of the Operating System. The moment the OS version has been marked as ‘end of life’, Trust1Team can not guarantee the functionality anymore.
When PARTNERS are in need to support an older version or keeping the support running on the level of Trust1Team, no guarantees can be made. Trust1Team can setup a custom project, on demand of the PARTNER. Those requirements, changes or other adaptations needed, are not covered in the Trust1Connector license fee.
Windows 7
No
EOL but some partners are running a custom compiled target of the Trust1Connector in production until migration.
Windows 8.1
No
Windows 10
Yes
Windows 11
Yes
macOS 10.15 (Cataline)
No
EOL
macOS 11 (Big Sur)
Yes
macOS 12 (Monterey)
Yes
macOS 13 (Ventura)
Yes
macOS 14 (Sonoma)
Yes*
2023-10
macOS 14 (Sonoma) has issues at the moment with usblib and CCID. A future patch will fix the card reader issues; Updates will be come avaible when a patch is released
To run in user-space on Windows 8.1 or higher some components have to be set on the operating system
Below you can find a list of all registry keys that will be created for the working of the Trust1Connector, All these keys are added to HKCU
HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
HKEY_CURRENT_USER\SOFTWARE\Trust1Team\Trust1Connector
Since 3.5.x no more cookies are used.
The Trust1Connector is browser agnostic so it does not matter what browser is being used as long as it support HTTP communication (HTTP 1.1) (which should all of them).
Version wise we do recommend to use the latest versions of your browser for security reasons but the versions below is was we accept as a minimum
Chrome >80
Firefox >75
Edge 88 or higher
IE 11 (End of Life is June 15 2022)
All other browsers. As recent as possible
The Trust1Connector
core services address communication functionality with local devices. The Trust1Connector
core exposes 2 main interfaces:
interface for web/native applications using JavaScrip/Typescript
REST API as a new approach and to incorporate the Trust1Connector
as a microservice in the application architecture
In this guide, we target only the use of Trust1Connector's
core interface for web/native applications.
The T1C-SDK-JS
exposes protected resources for administration and consumer usage.
Consumer resources are typically used from an application perspective:
Get pub-key certificate
Get version
Get Information (operating system, runtime, user context, variable configuration)
List card-readers (with active card)
Get card-reader
List card-readers (with active cards)
List card-readers (with or without active card)
Trigger a push of the log files towards the DS
Executing these functionality is explained further.
The Trust1Connector functionalities are about secured communication
with device hardware.
The document highlights communication with smart card readers - contact and contact-less. Other hardware devices can be enabled or integrated as well in the solution. Some of the already are, for example printer drivers, signature tablet drivers, ...
Returns a list of available card readers. Multiple readers can be connected. Each reader is identified by a unique reader_id
.
The response will contains a list of card readers:
When multiple readers are attached to a device, the response will show all connected card readers:
Important to notice:
The response adds a card
-element when a card is inserted into the card reader.
The response contains card-reader pin-pad
capabilities
As mentioned in the List card-readers
, when a smart-card is inserted/detected, the reader will contain the cart-type based on the ATR. The ATR (Anwser To Reset), is the response from any smart-card when powered, and defines the card type.
The Trust1Connector
recognized more than 3k smart-card types.
As mentioned in the List card-readers
, when a card-reader has pin-pad capabilities, this will be mentioned in the response (notice the pinpad
property):
The following example is the response for List card-readers
on a device with 4 different card-readers attached:
In the above example you notice that 4 card-readers are connected. Each card-reader receives his temporary id
which can be used for other functions where a card-reader id is needed.
This method can be requested in order to list all available card-readers, and optional cards-inserted.
Each card-reader has a vendor provided name, which is retrieved from the card-reader itself.
An additional property pinpad
, a boolean
value, denotes if the card-reader has pin-pad capabilities. A pin-pad is a card-reader, most of the times with its own display and key-pad.
From a security perspective, it's considered best practice to use as much as possible pin-pad capabilities of a pin-pad card-reader.
When a reader has a smart-card inserted (contact interface) or detected (contactless interface), the card type will be resolved by the GCL in order to respond with a meaningful type.
In the above examples you see that; one card-reader has a Belgian eID card; another card-reader has a MisterCash
or VISA Card
available for interaction.
The readers returned, are the card-readers with a card available. The card-readers where no card is presented, are ignored.
Returns a list of available card readers with a smart card inserted. Multiple readers can be connected with multiple smart cards inserted. Each reader is identified by a unique reader_id
and contains information about a connected smart card. A smart card is of a certain type. The Trust1Connector
detects the type of the smart card and returns this information in the JSON response.
Response:
To retrieve the version of the Javascript SDK you can use the version
function available in the CoreService
You can follow the example below to retrieve the version number
The ouput in the log of the code above should look like the following
via the getDevicePublicKey endpoint you're able to fetch the public key information of the device. This requires an authenticated client to be able to access this endpoint.
This endpoint is used in the library to encrypt pin, puk and pace information so that it is not exposed in the network logs of the browser.
Encryption of pin, puk and pace is only possible when the Trust1Connector is registered via a DS and has a valid device key-pair. The SDK will automatically switch to send the pin, puk or pace info in clear text if its not able to encrypt. The Trust1Connector API will also detect if it has no valid device key-pair it will not try to decrypt the incoming pin, puk or pace information.
Via the pushLogs
function you can trigger the Trust1Connector to send out the log files towards the Distribution service.